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It has been suggested that odour encoding in olfactory systems
occurs by synchronized ¢ring in neuronal populations. Neurons
correlated in terms of the Lempel^Ziv distance of spike trains and
the sequential superparamagnetic clustering algorithm belong to
the same cluster if they show similar, but not necessarily synchro-
nous, ¢ring patterns. Using multielectrode array recordings from
the rat olfactory bulb, we have determined cluster incidence
and stability in the neuronal network using both the Lempel^Ziv

distance and a measure of synchronization. In the Lempel^Ziv
paradigm, we found pronounced stabilization and destabilization
e¡ects in the neuronal network in response to odour presentation
when compared with the synchronization paradigm.This suggests
that synchronization alone may be insu⁄cient for understanding
olfactory coding. NeuroReport 17:1499^1502 �c 2006 Lippincott
Williams &Wilkins.
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Introduction
Olfaction is a chemical sense, differing largely from senses
that process physical input like photon density (vision) or
air pressure/particle velocity (hearing). A major distinction
is the synthetic property of olfaction, that is, the ability to
assign a specific identity to a great number of component
mixtures [1]. In humans, there are approximately 350
different types of odour receptors present on the surfaces
of the olfactory receptor neurons, while other species of
mammal may have many more, allowing the discrimination
of many thousands of different odours [2]. Therefore, it is
assumed that odour identity is encoded in the activity of
many cells in the output neurons of the olfactory system (in
vertebrates it is the mitral cells of the olfactory bulb). Thus,
olfactory coding is a typical example of a population code
and requires the analysis of functional clustering within a
neuronal network of an olfactory sensor when confronted
by a specific odour. On the basis of studies in the
invertebrate [3] and vertebrate [4] olfactory systems, the
most frequently applied criterion determining membership
of such a cluster for a specific neuron is whether the activity
of that neuron is synchronized with the other neurons in the
cluster. In invertebrate olfactory systems, for example in
bees [5], it has been shown that synchronization is essential
for discrimination between different odours. Although it has
been proposed that this might be the case in the vertebrate
brain, this has yet to be confirmed. Numerous theories of
neuronal function rely on the assumption of synchroniza-

tion in neuronal populations [6]. It has however been
suggested that higher cortical areas may lack the necessary
mechanisms for decoding synchronous spikes [7].

What properties in neuronal firing, other than synchro-
nization, might enable identification of specific populations
encoding for specific odours within an olfactory neural
network? We address this question using alternative criteria
for neuronal population identification on the basis of the
Lempel–Ziv distance (LZ-distance) of spike trains [8] and
the sequential superparamagnetic clustering paradigm [9].
In this approach, neurons belong to the same cluster if they
show similar, but not necessarily synchronous, patterns in
their firing. Here, we apply our criteria to electrophysiolo-
gical data acquired from the mitral cell layer of the olfactory
bulb of the rat using multielectrode array recordings, and
compare the results with those obtained when using
synchronization as the physiological resource for odour
encoding in this neuronal population.

Methods
Experimental procedure
Neuronal activity of anaesthetised rats (25% urethane,
intraperitoneal, 1.5 g/kg body weight) was sampled using
a microelectrode array positioned in the olfactory bulb. The
arrays comprised 30 electrodes (6� 5 grid, 350mm tip
separation). An odour (cineole), carried as a saturated
vapour in nitrogen gas (odourless), was mixed with dry air
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(5.42� 10�6 mol) and delivered for 10 s to the rat via a mask
over the nose. Breathing was monitored, and the onset of
odour delivery was timed to mid-expiration. Neuronal
activity was sampled in the 10 s period before odour onset
(the prestimulus period) and the 10 s period of odour
presentation (the during-stimulus period). Spikes were
detected when a triggering threshold was crossed by the
recorded signal from an electrode. This threshold was set at
Z2� the background noise level. The activities of single or
multiple neurons were detected in the activity sampled by
each electrode. The activities of individual neurons were
distinguished from multiple neuron activity using a
machine learning algorithm to cluster spikes on the basis
of waveform features acquired using principal component
analysis combined with features describing the geometric
shapes constituting a spike waveform [10], allowing
discrimination of activity from multiple neurons at each
active site. In this way, simultaneous recordings from more
than 40 neurons were made per rat. Forty odour presenta-
tions were made, yielding a total of 80 spike trains per
neuron. The experiments were performed on two different
animals. All procedures used for data collection conformed
to the Animals (Scientific Procedures) Act, 1986 (UK Home
Office).

Spike train clustering
As a measure of similarity for neuronal clustering, we use
the LZ-distance, a distance measure based on the Lempel-
Ziv complexity [11]. The properties of the measure are
outlined in [8], and we therefore only briefly review the
main points here: the spike trains are translated into
bitstrings Xn of length n using a bin size of 1 ms, such that
the symbols ‘0’ and ‘1’ denote, respectively, the absence or
presence of a spike. These bitstrings are coded using a
parser that partitions the string into nonoverlapping sub-
strings called phrases (LZ coding). The LZ-distance com-
pares the set of phrases generated by LZ coding of two
bitstrings originating from corresponding spike trains. A
large number of similar patterns appearing in both spike
trains leads to a large overlap of the sets of phrases. Thus,
distances between spike trains with similar patterns are
small, whereas distances between spike trains with different
patterns are large. Tests have demonstrated that LZ-
distances between spike trains with similar, but not
necessarily synchronous, sequences of interspike intervals
are considered small.

The application of the LZ-distance to a set of spike trains
produces a distance matrix, which serves as an input for the
sequential superparamagnetic clustering algorithm. Using
this algorithm (see [9] for a detailed description of the
algorithm), neither the number of clusters nor their size has
to be predefined. The clustering algorithm comes equipped
with an intrinsic measure for cluster stability s, in which
0rsr1. It sequentially ranks clusters according to their
stability, that is, the most stable cluster is detected first and
the last cluster is the least stable one. The clustering
parameters have been chosen as follows: minsize¼2 (the
minimum number of neurons in a cluster) and sy¼0.04
(the minimum required stability of a cluster). To compare
the result obtained using the LZ-distance with a correlation
measure, we applied the correlation distance (C-distance;
the clustering procedure is analogous to that in [12]). For the
C-distance, spike trains that share a large number of

synchronous spikes are considered to be close. Therefore,
the measure reflects the criterion of synchronization in
neuronal group formation.

Our analysis was performed in a three-step procedure.
First, we determined the number of clusters of neurons
in each of the 80 periods of recording, using both the
LZ-distance and the C-distance for the data obtained in both
animals. Second, we quantified the interactions of each
neuron with every other neuron in the during-stimulus
period compared with the prestimulus period. This was
accomplished by assigning each neuron a vector, whose
components each indicate the number of times the specified
neuron participated in a cluster with another neuron.
Periods of recording were excluded if no clusters formed.
Such periods occurred in both the prestimulus and during-
stimulus periods using both distance measures. For
example, for the ith neuron Ni, the vector has the form
Ni¼(x1, y, xmax), where xj indicates the number of times the
neuron Ni is in the same group as the neuron Nj and max is
the number of neurons measured in that animal. The
distance between two such vectors Ni and Nj is simply

dðNi;NjÞ ¼ 1�
Ni �Nj

jNijjNjj
: ð1Þ

Using this measure, proximity of two neurons indicates that
they often participate in the same cluster. By clustering with
this distance measure, averaged over all trials, the degree of
interrelation of neurons within the network is derived
(‘clusters among partners’). We determined the dendrogram
for sy¼0.1 such that only stable clusters are detected. Third,
we identified those neurons that remain in the same cluster
for both the prestimulus and the during-stimulus periods
(‘partners’). We found that almost all neurons, when
associated with a partner, keep their partners in both
periods. The stability of the clusters identified was then
quantified as follows: we reduced the vector Ni of each
neuron Ni generated in step two, to those components
representing the partners of this neuron, leading to the
vector N0i. For example, if Ni has four partners, then N0i has
five components. The mean of the lengths of the vectors of
all neurons in a cluster reflects the stability of this cluster.
This was determined for both prestimulus and during-
stimulus periods. Note that in this analysis two different
notions of clusters and stability are investigated. In the first
step, the clusters reflect the degree of relatedness in a single
period of recording and cluster stability is an intrinsic
parameter of the clustering algorithm. In the third step, the
clusters reflect the mean degree of relatedness between
the neurons of the network and the stability is quantified by
the number of times neurons of the same cluster are
grouped together in each single trial.

Results
We performed the procedure described in the spike train
clustering section using both the LZ-distance and C-distance
as similarity measures for clustering on the data obtained in
both animals. The result of the first step of our analysis is
shown in Fig. 1. We find that the number of clusters
emerging on stimulus presentation does not seem to
indicate whether the network is in a prestimulus or a
during-stimulus condition. The standard deviations reflect a
considerable intertrial-variability of the network behaviour.
A special case emerged in animal B using the C-distance
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paradigm. Here, for sy¼0.04, no clustering was observed.
Clusters emerged in some cases only at sy¼0.02, and were
almost entirely of sizes 2 and 3, leading to the large standard
deviation shown. This result is typical for situations where
no natural clusters are present in the dataset [9], that is,
indicating that no significant synchronization effect
emerged in the olfactory neuronal network of animal B.
We thus excluded the results obtained in the C-distance
paradigm of animal B from steps 2 and 3 of the analysis.

The results of the second and third steps of our analysis
are shown in Fig. 2. Here, we find clear differences between
the prestimulus and during-stimulus periods for some
clusters of partners. In animal A, using the LZ-distance
paradigm, seven clusters were identified among partners.
Among them, cluster 1 shows a clear stabilization effect (i.e.
the mean vector length is significantly increased), whereas
cluster 3 shows a destabilization effect (the mean vector
length decreases). The other clusters do not show significant
changes. Using the C-distance paradigm, four clusters
among partners are identified. Here, only cluster 2 shows
a significant effect in consequence of stimulus presentation
(a destabilisation), although the magnitude of the effect is
smaller than in the LZ-paradigm. In animal B, using only
the LZ-distance paradigm as explained above, four clusters
were identified among partners, two of them changing in
response to stimulus presentation: destabilization for cluster
3, and stabilization for cluster 4.

Discussion
In recent times, the dynamic aspects of olfactory network
computation have become an important topic in olfaction
research (e.g. [13]). We have investigated this issue by
focussing on functional clustering in olfactory neuronal
networks using two different paradigms of similarity in
neuronal firing. We find that, for both paradigms, the
number of clusters formed does not reflect the presence or
absence of a stimulus and that, on the basis of our ‘partner
analysis’, neurons indeed keep their partners in both pre-
stimulus and during-stimulus conditions. This probably
reflects the underlying neuronal network structure that does
not change over the relatively short time scale used in our

experiment. Rather, odour presentation alters the degree of
interrelation between the partners in these clusters. This
manifests in the effects of stabilization and destabilization in
some of the clusters identified. These effects might reflect
the computation performed by the network: those clusters
that are involved in olfactory encoding stabilize their firing
patterns, whereas others remain unaffected or even desta-
bilize – the latter might also have a functional role. For
example, in the context of signal reproduction with a limited
set of resources, negative correlation may result in systems
with lower noise, and more accurate representation of
information (S. Durrant, K.M. Kendrick, J.F. Feng, in
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Fig. 1 Olfactory neural network clustering, measured by the Lempel^
Ziv (LZ) distance and the C-distance: the mean (7SEM) number of clus-
ters in the prestimulus and during-stimulus condition for both animals
investigated.
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Fig. 2 Stability of clusters among partners (see the text): (a) animal A,
LZ paradigm; (b) animal A, C-paradigm; (c) animal B, LZ paradigm. In
(a) and (b), the upper inset (dotted line) reproduces the area of the lower
inset on an expanded vertical axis.
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preparation; [14]). Evidence for negative correlation in
neuronal firing in the olfactory bulb as a component of the
response to odour presentation has been presented else-
where [15]. We find that the effect of stabilization and
destabilization is more prominent in the LZ-paradigm than
in the C-paradigm, indicating that synchronization alone
may be insufficient for understanding olfactory coding. An
open question remains, however: how are spike trains that
are similar under the LZ-paradigm decoded by higher
cortical areas?

Conclusion
Our multielectrode array recordings from the mitral cell
layer of the rat olfactory bulb reveal significant effects of
stabilization and destabilization in neuronal clustering
expressed by the LZ distance as a result of odour
presentation. These effects are much more pronounced than
those for neuronal clustering using the synchronization
paradigm, indicating that the effect of synchronization is of
less importance in understanding population coding in the
vertebrate olfactory system than has been theoretically
predicted.
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