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Abstract

We investigate the consequences and perspectives resulting from a strict concept of machine autonomy. While these kinds
of systems provide computationally and economically cheaper solutions than classically designed systems, their behavior
is not easy to judge and predict. Analogously to human communication, a way is needed to communicate the state of the
machine to an observer. In order to achieve this, we reduce the proliferation of microscopic states to a manageable set of
macroscopic states, using a clustering method. The autonomous machine communicates these macroscopic states by means
of a visual interface. Using this interface, the observer is capable of learning to associate machine actions and states, allowing
it to make judgments on, and predictions of, behavior. This emerged to be the crucial ingredient needed for the interaction
between humans and autonomous machines.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the field of Artificial Intelligence, machine au-
tonomy was originally considered to consist of five
aspects[1]:

(1) The ability to make independent decisions based
upon observations, to do planning, to draw con-
clusions and to make judgments concerning con-
sequences.
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(2) The warranty of autonomy through guidelines and
policies.

(3) The independent completion of tasks, by combin-
ing the planning and controlling steps.

(4) The ability to learn and eliminate mistakes.
(5) The ability to cooperate, in particular, with other

machines

Due to the more recent methods used for the cre-
ation of autonomous systems, notably genetic algo-
rithms, we feel that the concept of autonomy should
be formulated as general as possible. Hence, here we
define autonomous machines as systems developing
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Fig. 1. Autonomous gait generator. By reducing the load, the gait changes from a period 2 (a) to a period 3 (b). The system consists of a
chaotic tent map, where the load is implemented by a horizontal line replacing the graph above a certain height (the limiter)[6].

according to their own dynamics, under the interaction
with their environment[2,3].

As an example, consider snake-like locomotors
[4,5]. Their main class of movements is crawling.
However, it is observed that crawling emerges in
different patterns, called gaits. For example, some
snakes crawl in a sine-like way, while others prefer to
move like side-winders. In the context of autonomous
systems, this can be interpreted as follows: Take
a chaotic autonomous system, for simplicity a 1D
chaotic system[6]. Consider the effect of loads, that
are omnipresent in nature, on the system. The most
obvious effect of a load is that certain areas of the
phase space are prohibited and states in these areas
are excluded. The effect can be even more dramatic
than a mere suppression of some orbits. It has been
observed that a previously chaotic system under load
may change to stable periodic behavior[7,8]. More-
over, a change of the load often induces a change
in the periodicity of the orbit. In the context of lo-
comotion, this means that the load (representing the
environment) can be interpreted as a gait selector for
the autonomous system, where no explicit control,
or adaptation, mechanism is needed to obtain the
generically robust gait (seeFig. 1).

This simple example of an autonomous gait genera-
tor demonstrates key features of autonomous systems:
they may provide computationally and economically
cheaper solutions than the classical finite-state ma-
chines. Moreover, they have the ability of finding
novel, i.e., by humans unanticipated, solutions.

Autonomous systems do away with the explicit
controller found in classical rule-based systems (see
Fig. 2). The absence of this controller, however, does
come at a cost. To enable interaction, the controller is
usually used as an interface, reporting the state of the

Fig. 2. Comparing interaction with controller-based versus inter-
action with autonomous systems. (a) Controller-based systems:
rule-based, less flexible, resource-demanding; easier to access, due
to the existence of the controller. (b) The autonomous system has
resource-saving optimal behavior, but is more difficult to commu-
nicate with.

system. The lack of a controller, thus, poses a new
problem: How can the states and actions of the au-
tonomous system be evaluated, and the behavior pre-
dicted? The challenge is to find a minimal encoding/
representation of the inner states of the autonomous
system, to allow the unbiased judgment of the cur-
rent state and a prediction of the future behavior, but
otherwise minimally binding system resources.

2. Macroscopic states, behavior and
communication

The abdication of control of the system in exchange
for autonomy has the effect that the relation between
internal machine variables and macroscopic machine
behavior is no longer inherently obvious. As a conse-
quence, for the representation problem, directly em-
ploying the values of the inner variables will be of little
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help. Example, merely plotting all the (neuron state)
values of a neural network does not usefully represent
the current state of the autonomous machine. It may be
argued that, in principle, any dynamical system’s de-
velopment on multiple time scales could be captured
by measuring a scalar time series and using the em-
bedding theorem[9,10]. Still, this does not make the
underlying data any clearer. A reduction of the multi-
tude of microscopic states is needed.

Macroscopic states emerge even in the absence of an
explicit controller because the internal states are cor-
related. This is due to the fact that the world perceived
by the autonomous systems by is highly structured.
Which, in turn leads to clustered microscopic states.
The identification of the macroscopic states, however,
is an a priori nontrivial task. Recently, however, unbi-
ased clustering approaches have been developed.

That such a clustering approach is in fact feasible
is demonstrated in the following example. Consider
a system, where its state, at any one time, is a point
described in 166 dimensional vector space. A list of
153 such vectors is analyzed using the superparamag-
netic clustering algorithm[11]. In this approach, the

Fig. 3. A clustering dendrogram. As the order parameter increases along thex-axis the data separates into clusters. The percentages indicate
the number of points per cluster.

tendency to cluster is counteracted using an order pa-
rameter, i.e., the order parameter is used to break up
the data into smaller clusters. The successful reduction
from 166 microscopic variables to eight macroscopic
states is shown inFig. 3.

We have shown that macroscopic states emerge
from the interaction between the system and its envi-
ronment. This leaves the question of how these states
can be communicated to an observer. Symbols is
the most obvious way to express these macroscopic
states to an observer. Most often, this is communi-
cated in the form of speech. Verbal man–machine
interfaces have been, and still are, the subject of in-
tensive research[12,13]. However, they are generally
resource-intensive and not universally understand-
able. To compensate, in real life, spoken language
is often complemented by ‘body language’. Visual
perception and interpretation of, e.g., human gesture
and bearing, to judge another human being’s ‘state’,
and to predict future behavior, is everyday practice
and considered quite reliable. This is formalized in
the facial action coding system[14] used in psychol-
ogy. The relative changes in a small number of facial
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landmarks reliably communicate the inner psychic
state of the patient[15]. Visual cues have proven a
practical and efficient way to communicate macro-
scopic states.

3. Visual communication

Following this reasoning a visual interface is the
most reasonable, but it does not delimitate how this
can be realized. First and foremost, these state rep-
resentation should not be anthropomorphic, since the
biased projection of human-like thinking/emotions
onto the machine would be erroneous. An interface
that allows humans to (unimpededly) learn to as-
sociate the behavior with additional visual stimuli
would be ideal. That is, requiring a means capable of
representing the macroscopic states through time in a
human, and preferably human cultural, unbiased way,
in order to facilitate learning.

Our solution to these constraints is the use of a frac-
tal pattern generator. Fractal patterns come without
predefined meaning and use simple, resource-friendly,
generators. As a function of their parameters, they are
able to generate a large variety of patterns. Due to
their self-similarity properties, they allow a fast grasp
of essential pattern structures, and have the potential
to adjust to changing macroscopic state compositions.
While the patterns for given parameter values are with-
out precise predictability, they exhibit an overall conti-
nuity property. This property is helpful when behavior
should be associated with the succession of states.

For example, a very simple fractal pattern generator
is given by the rulekt+1 = lt − √|bkt − a| sign(kt),
lt+1 = kt−a, with parameters{a, b}. The fractal map,
despite of its simplicity, generates a huge variety of ge-
ometries and temporal paradigms. By associating each
state with a parameter pair{a, b}, the generated pat-
terns can be used to represent these states. Depending
on the number of independent parameters, more com-
plicated pattern generators can be used. Care, how-
ever, must be taken to ensure that the dependence on
all the parameters is of comparable impact, in order to
obtain a transparent representation of the main states
and the system behavior.

Such a visual interface was implemented as a contri-
bution to the ‘Ada – the intelligent space’[16] exhibit
of the Swiss national exhibition ‘EXPO.02’. This ex-

hibit had as the main goal the initiation of a public de-
bate on the application, and implication, of brain-based
technologies[16]. As such, its original design was that
of an autonomous system, based on a biomorphical
neural network connected to sensors and actuators. A
simple-to-grasp fractal representation was designed to
provide an improved understanding and judgment, by
the visitors, of Ada’s actions and reactions. Moreover,
by the emergent interaction, Ada should develop an
autonomous identity on its own, where the interaction
with the visitors would replace the role of the friction
in the introductory example of autonomy.

The input to his interface was a number of pre-
defined and prelabeled coarse-grained states. The
states were grouped on three mutually exclusive axes
(labeled ‘satisfaction’/‘frustration’, ‘joy’/‘sadness’,
and ‘surprise’/‘dullness’). Each axis contained three
states (labeled ‘minus’, ‘neutral’, ‘plus’), yielding 27
states in total. For the representation of the states,
different ‘aesthetic’ classes of patterns emergent from
the fractal pattern generator were chosen. Forms best
expressing the particular macroscopic qualities were
selected and put on the axis, where the arrangement
from ‘minus’ to ‘plus’ indicates the increase of the
particular quality, by using the complexity measure of
Stoop and Stoop[17] for the available patterns. In this
way, a representation as shown inFig. 4(a) is obtained,
where, however, only the extremal states are displayed.

The representation over different time scales needed
for an interpretation in terms of behavior was achieved
by plotting the fast dynamics within the pattern gen-
eration and, on a slower time scale, the change in
the macroscopic state. On the fast time scale, in the
middle of the screen a freshly generated fractal pat-
tern represents the current state, i.e., present time. On
concentrically expanded rings surrounding the inner
circle, previously generated patterns are maintained,
and handed on from one ring to the next one lying out-
ward, as in the center the current state is rendered. In
this way, the succession of states is represented, with
the past fading out towards the frame of the screen.
The logarithmically growing size of the patterns
supports the illusion of a history passing by the ob-
server. A crude picture of the representation is shown
in Fig. 4(b). Whereas the generation of individual
points of the central pattern cannot be followed, the
overall temporal generation (‘temporal paradigm’) is
perceivable. The update of a pattern containing a few
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Fig. 4. (a) Patterns corresponding to extremal states. (b) Representation layout, showing the succession of four particularly distinct states.
Each state is represented by a new fractal being drawn in the center (the red fractal representing the current state). Outer rings carry
earlier fractals, partially overlapping with temporarily adjacent patterns. Only the inner deliminators of the rings are shown. The dynamical
behavior, which is essential for human perception, is not represented in these figures.

thousand points was typically done in a couple of
seconds.

Although Ada was only partially autonomous be-
cause of the restrictive time slot allotted for visitors
and the generic risk of explorative work during the
exhibition, it still clearly demonstrated the feasibility
of our approach: even to minimally experienced ob-
servers it was immediately clear when the displayed
patterns were not determined by Ada’s inner states.
The displayed patterns simply did not seem to corre-
spond to the behavior of the autonomous system.

4. Conclusions

We investigated the consequences and perspectives
of genuine machine autonomy. As such systems lack
a controller, an interface for communication has to be
explicitly established. Our proposed solution is based
upon macroscopic states obtained by means of cluster-
ing. These states are visually communicated to the hu-
man observer using a fractal pattern generator, provid-
ing an unbiased basis for the evaluation of autonomous
machine state and behavior. On this basis, communi-
cation between the observer and the autonomous sys-
tem can be established and developed, allowing the
system to adapt to a human sociocultural environment.

Our work provides a basis for future work that will
allow important in-sights into the structure of optimal
human–autonomous machine interaction to be gained.
Clustering techniques, e.g.,[18], promise a particu-
larly powerful means to further classify internal states
for a human observer. As an continuation of our work,
an autonomous model system (understood in terms of
our definition) will be designed and run in an environ-
ment free from prohibitive conditions, evolving along
the insights obtained in this contribution.

Appendix A. Technical design aspects of Ada
implementation

Inner state representation requires action in
real-time, posing heavy demands upon hardware. To
some extent, this can be compensated for by careful
software implementation, with the consequence that
performance requirements largely determine the soft-
ware implementation design. In our case, this led to
the decision to use C as the programming language
and SDL (simple direct layer) as the rendering library.
For simple interaction between different components
of our application, we chose a fast CORBA implemen-
tation (ORBit) as the mechanism of communication.

As a consequence, our implementation architecture
is client–server based. The software basically consists
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of (a) a small and fast CORBA server and (b) a num-
ber of independent client processes. The software’s
design allows running these parts on different ma-
chines, connected over a standard TCP/IP network.
The CORBA server’s only task is to hand over the
parameter values it receives from Ada to the repre-
sentation processes. Instead of directly connecting the
representation processes to Ada, this architecture was
chosen based upon stability and performance consid-
erations (there could, in the future, be more than one
such process). Every parameter representation pro-
cess is a CORBA client which retrieves the current
parameters from the CORBA server and calculates
the object to be represented.

In the standard Ada implementation, the pattern
generator (responsible for the scaling of the current
pattern and the calculation of the next one) was the
only representation process. It is composed of differ-
ent threads. One thread simultaneously calculates the
patterns from the data received via CORBA and stores
them into a pixel buffer as well. The main thread is
the rendering thread. It takes the pixel buffer from the
pattern generator, scales it according to a time variable
and adds it together with the previous pixel buffers to
form a ‘background buffer’. As a last step, it swaps
the current screen buffer with the background buffer.

This implementation assures high frame rates, as
the actual rendering process only has to scale, add and
blit buffers, avoiding unnecessary communication be-
tween threads. Using this implementation on a Pen-
tium IV personal computer, the representation over
different time scales poses no problems and is only
limited by the human eye’s ability to identify pattern
structures.
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